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The effect of polymer polydispersity on the depletion interaction between two plates immersed in a nonad-
sorbing polymer solution is studied by self-consistent-field theory. The depletion potential is calculated nu-
merically for the Schulz molecular weight distribution. The results show that as the two plates approach the
polymers with different chain lengths are excluded from the gap gradually for conformational entropy penalty,
and the range of the depletion potential increases and the depth of the potential decreases with increasing
polydispersity. For the case of two large spheres the Derjaguin approximation is used to study the effect of
polydispersity. The result shows that the polydispersity has little effect on the contact potential. However, it
induces more broad interaction than the monodisperse polymers.
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I. INTRODUCTION

The depletion effect between colloidal particles induced
by nonadsorbing polymers attracts more and more attention
recently due to its importance in biological and industrial
applications, such as the phase separation of polymer-colloid
mixtures, colloidal suspensions flocculation and protein crys-
tallization �1,2�. From a theoretical viewpoint, it is valuable
to investigate the conformational change of polymers in a
strongly confined state when depletion occurs. In practical
applications the depletion interaction possesses an outstand-
ing feature, or, it can be tuned easily. We can control the
range and the strength of the attractive depletion force be-
tween the colloidal particles by varying the characteristic of
the added polymers, which have pronounced effects on the
phase diagram of polymer-colloid mixtures.

Most studies focused on monodisperse polymers because
of their simplicity �3–11�. However, in practice polymers are
polydisperse and possess a distribution of molecular weight,
which has a quantitative impact on the depletion interaction.
In a dilute polymer solution of monodisperse polymers, the
range of the depletion interaction is the same as the radius of
gyration of the polymers, which is the characteristic length
of the system. When the distance between the two plates �or
spheres, etc.� is smaller than the size of the polymers, the
polymers escape from the gap between the two objects to get
more conformational and translational entropy. Thus, there
exists a difference in osmotic pressure between the inside
and the outside of the gap, which induces an attractive inter-
action and pushes the plates �or spheres� together. However,

in the case of polydisperse polymers, there is no unique char-
acteristic length in the system. As two objects approach, the
penalty of entropy for longer chains is more than that for
shorter chains, and the longer chains will move out from the
gap first and then the shorter chains will move out gradually.
We can expect that the range of the depletion interaction will
be larger than that of monodisperse polymers. In semidilute
solutions, polymers with different chain length entangle each
other. In this case the correlation length �or the mesh size� of
the solution is the most important quantity �12�, and the
polydispersity hardly affects the properties of the solution.
Although in the depletion case, where the polymers with
different lengths exhibit different behaviors for the spatial
confinement, it can be expected that the overall effect of
polydispersity is rather weak.

The common method is to treat polydisperse polymers as
polydisperse penetrable hard spheres �13–16�. This oversim-
plified model can catch the main point of polydispersity,
however, the material characteristic of chain connectivity is
neglected and the interaction between polymer coils is crude.
As a result, the description of the obtained depletion force is
qualitative and not accurate. Tuinier and Petukhov extend the
force method to calculate the interaction between two plates,
and used the adsorption method with the product-function
approximation to investigate the effect of polydispersity for
two spheres in an ideal polymer solution �17�. The polydis-
persity was taken into account by averaging the correlated
quantities with the distribution function. However, their
method is phenomenological and cannot be applied to real
polymers with excluded volume. On the other hand, we no-
ticed that in the study of equilibrium polymers at interface,
van der Gucht et al. found that the exact analytical solutions
are possible for the exponential distribution of polymers*yandd@iccas.ac.cn
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length �26,27�. This distribution is a special case �k=1� in the
Schultz distribution of the polymer chain lengths, and the
corresponding results can be comparable.

The self-consistent-field theory �SCFT� and the corre-
sponding numerical methods provide a useful tool in the
studies of inhomogeneous polymers and complex fluid inter-
faces �18–21�. In polymer solutions the approximation of
SCFT is proved to be successful in dealing with the
homopolymer-solvent system, although the mean-field ap-
proximation breaks down in some cases where the fluctua-
tion is enormous, such as in semidilute solutions with good
solvents �22�. In this paper, we use the method developed by
Fredrickson and Sides �23� to study the effect of polydisper-
sity on the depletion interaction between two plates. In this
method, the realistic continuous distribution of chain lengths
can be incorporated into the SCFT models of polymer solu-
tions. The equilibrium structure of the system, including the
density profile of each component in the chain length distri-
bution, can be calculated by an effective numerical method.
We choose the Schulz distribution as the distribution func-
tion of polymer chain lengths. The merit of this method is
that it is based on a microscopic description and that the
polymer polydispersity is taken into account properly in the
partition function. The developed formula will be exact and
the results will be accurate enough even when we take some
approximations in the calculation of the integrals appearing
in the theory. The contribution from the chains with different
length must be calculated accurately in view of the subtle
effect on the depletion interaction. In order to compare with
the monodisperse case, the polydisperse polymer solutions
have the same bulk concentrations and the same number av-
erage chain length as the monodisperse polymer solutions.

The paper is organized as follows. In Sec. II we present
the SCFT of polydisperse polymer solutions in the grand
canonical ensemble frame and the corresponding method for
solving the self-consistent-field equations for the Schulz mo-
lecular weight distribution. In Sec. III we present the results
and discussions. In Sec. IV we give the conclusions.

II. THEORY

We consider a polydisperse polymer solution between two
parallel plates to be in equilibrium with a reservoir. The dis-
tance between two plates is d, the area of each plate is A, and
hence the volume of system is V=Ad. We adopt the grand
canonical ensemble to describe the system. The grand parti-
tion function for the polydisperse polymer-solvent mixture is
defined by

� = �
n1,n2,. . .,nN,. . .=0

�

�
ns=0

�

en1�1+n2�2+¯+nN�N+¯

�ens�sZ�n1,n2, . . . ,nN, . . . ;ns� . �1�

In this expression, nN and �N denote the number and the
chemical potential of polymer chains with chain length N,
respectively. ns and �s denote the number and the chemical
potential of solvent molecules, respectively. In the following,
we take the statistical segment length of the polymer, b, as

the unit of length, and kBT as the unit of energy. For simplic-
ity, we assume that the solvent molecules occupy the same
volume as the monomers �statistical segments� of the poly-
mer. The average monomer density is given by �0=1/b3. Z is
the partition function for the system with fixed particle num-
bers �n1 ,n2 , . . . ,nN , . . . ;ns� given by

Z�n1,n2, . . . ,nN, . . . ;ns�

=
const

ns!�i
ni!
	 �

j

�drs
j�D�Rp����̂p�r�

+ �̂s�r� − �0�exp�− U0�Rp� − W�Rp,rs�� , �2�

where the integration D�Rp� denotes all path integrals over
all possible conformations of the polymer chains. The inte-
gral of the momentum has been carried out and included in
the constant term. We ignore the contribution from the ki-
netic energy since it has no impact on the thermodynamic
properties. U0 is the “Edwards Hamiltonian” of the polymers
given by

U0�Rp� =
3

2b2�
i
	

0

Ni

dt
 �

�t
Ri�t��2

, �3�

where the sum of i runs over all the chains, while the total
number of chains is n1+n2+ ¯ +nN+¯. Ni is the chain
length of the ith chain. The delta function embodies the in-
compressible condition of the polymer solution. The local
densities are given by �̂p�r�=�i�0

Nidt��r−Ri�t�� and �̂s�r�
=� j=1

ns ��r−rs�j��. W�Rp ,rs� is the intermolecular potential. In
terms of the local densities W can be described by a simple
form

W�Rp,rs� = b3		 dr�̂p�r��̂s�r� , �4�

where 	 is the Flory-Huggins parameter.
Equation �1� includes a two-body interaction. A Hubbard-

Stratonovich transformation is introduced to decouple the
two-body interaction. By defining the volume fraction �poly-
mer concentration� 
̂�r�= �̂�r� /�0, we have W

=�0	�dr
̂p�r�
̂s�r�. Following Helfand �18�, we can obtain
the following expression of � in terms of a functional inte-
gral representation:
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� =	 D
pD
sD�pD�sD� exp
	 dr��p
p + �s
s − 	
p
s − ��
p + 
s − 1���
� �

ns=0

�
�e�sQs�ns

ns!
�
n1=0

�
�e�1Q1�n1

n1! �
n2=0

�
�e�2Q2�n2

n2!
¯ �

nN=0

�
�e�NQN�nN

nN!
¯ =	 D
pD
sD�pD�sD� exp�− G� , �5�

in which

G =	 dr�	
p
s − �p
p − �s
s + ��
p + 
s − 1��

− �
N

e�NQN��p� − e�sQs��s� . �6�

The quantity QN��p� is the partition function of a single
polymer chain with length N in a potential field �p and is
given by

QN��p� =	 DR exp
−
3

2b2	
0

N

dt
 �

�t
R�t��2

− 	
0

N

dt�p�R�t��� . �7�

Similarly the partition function of a solvent molecule in a
field �s is given by

Qs =	 dre−�s�r�. �8�

Notice that in Eq. �6�, the sum of N is only the sum over the
different lengths �corresponding to different species�. Using
the continuous distribution of chain length N to replace the
discrete distribution, the sum of N can be replaced by the
integral over chain lengths and the second term in G
becomes �0

�dNe�NQN��p�.
Using the saddle point approximation, the mean-field

grand potential can be obtained. The self-consistent-field
equations can be derived by the minimization of G with re-
spect to 
s, 
p, �s, �p, and �. The results are as follows,
respectively,

�s�r� = 	
p�r� + ��r� , �9�

�p�r� = 	
s�r� + ��r� , �10�


s�r� = e�se−�s�r�, �11�


p�r� = 	
0

�

dN
e�N	
0

N

dtqp�r,t�qp�r,N − t�� , �12�


p�r� + 
s�r� = 1. �13�

The propagator qp�r ,N� satisfies the modified diffusion equa-
tion

�

�t
qp�r,t� =

b2

6
�2qp�r,t� − �p�r�qp�r,t� �14�

with the initial condition qp�r ,0�=1 and the boundary con-
ditions qp�r , t�=0 at the surfaces of the plates. The partition
function of the single chain QN��p� can be evaluated by
QN��p�=�drq�r ,N�. The volume fraction of monomers con-
tributed by the chains with length N is given by


p�r,N� = e�N	
0

N

dtqp�r,t�qp�r,N − t� . �15�

Obviously, 
p�r�=�0
�dN
p�r ,N�. Equations �9�–�14� consti-

tute a set of self-consistent-field equations, which can be
solved numerically. In the above equations the chemical po-
tentials �N and �s are unknown and can be determined from
the bulk phase of the reservoir.

Consider a bulk system, in which the total volume is V
and the total number of polymers chains is nt. The chain
length distribution function is denoted by f�N�. The quantity
of ntf�N�dN represents the number of chains in the bulk
phase with length between N and N+dN. The �number� av-

erage chain length is given by N̄=�0
�dNNf�N�. The bulk con-

centration satisfies


p
0 =

ntb
3

V
	

0

�

dNNf�N� . �16�

In the bulk homogeneous phase the polymer concentration
and the mean-field potentials are constants denoted by sub-
script 0. Giving the polymer bulk concentration 
p

0 of the
reservoir, we can calculate the chemical potentials. Because
the chemical potentials �N and �s are dependent on each
other, we can choose �s=0. From Eqs. �9�–�11� and Eq. �13�,
we obtain

�s
0 = − ln�1 − 
p

0� , �17�

�p
0 = − ln�1 − 
p

0� + 	�1 − 2
p
0� . �18�

Solving Eq. �14� with a constant potential �p
0, we can obtain

qp�t�=e−�p
0t. Equation �12� can be expressed by


p
0 = 	

0

�

dNe�NNe−�p
0N. �19�

Since Eqs. �16� and �19� must be equal, we have
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ntb
3

V
	

0

�

dNNf�N� = 	
0

�

dNe�NNe−�p
0N. �20�

In fact we can find that for any up limit in the above integral
Eq. �20� always holds. Combining Eq. �16� and Eq. �20� we
can obtain

e�N =

p

0 f�N�

	
0

�

dNNf�N�
e�p

0N =

p

0 f�N�

N̄
e�p

0N. �21�

Substituting these results into Eq. �6� yields the grand poten-
tial per unit volume in the homogeneous state as

g0 =
G0

V
= ln�1 − 
p

0� + 	�
p
0�2 −


p
0

N̄
− �1 − 
p

0� . �22�

Giving the chemical potentials, the polymer concentration
and the grand potential can be calculated. As a realistic chain
length distribution we adopt the Schulz distribution

f�N� =
kk

N̄
�k�

N

N̄
�k−1

e−k�N/N̄�, �23�

k is the polydispersity index. A smaller k corresponds to a
more polydisperse distribution.

Using the transformation M =kN / N̄, the total concentra-
tion of polymer segments is written by


p�r� = 	
0

�

dM
p
˜�r,M� . �24�

Here, the partial volume fraction coming from the chains
with length M is


p
˜�r,M� =


p
0e�p

0N̄M/k

N̄

e−MMk−1


�k�

�	
0

N̄M/k
dtqp�r,t�qp�r,N̄M/k − t� . �25�

We can define the average volume fraction of polymers as a
function of the separation of two plates, d, given by

�
p�d�� =
1

d
	

0

d

dx
p�x� . �26�

The grand potential of the system is

G =	 dr�	
p
s − �p
p − �s
s�

−

p

0N̄


�k�	0

�

dMe�p
0N̄M/ke−MMK−1QN̄M/k��p� − e�sQs��s� .

�27�

In Eq. �25� the indefinite integrals of M can be performed by
using a Gauss-Laguerre quadrature formula proposed by
Fredrickson and Sides �23�,

	
0

�

dMe−MF�M� � �
i=1

nG

giF�Mi� , �28�

where the abscissas Mi and weights gi are tabulated by
Abramowitz and Stegun �24�. This formula is efficient and
converges quite rapidly. We find that only eight points
�nG=8� are sufficiently accurate for all cases.

In order to calculate the depletion potential between two
plates �per unit area�, we define the excess grand potential
with respect to homogeneous state as

��d� = G�d� − G0. �29�

The pair potential between two plates �per unit area� at a
separation d is given by

W�d� = ��d� − ���� . �30�

The iterative method is used to find the self-consistent
solutions. The Crank-Nicholson semi-implicit scheme is em-
ployed to solve the modified diffusion equation. The longest
chain has a length coinciding with the largest Gauss-
Laguerre abscissa MnG

.

III. RESULTS AND DISCUSSIONS

The mean-field theory is applicable for polymer solutions
near the � point. In this paper, we restrict ourselves to ideal
solutions, or, 	=0.5. The solvency will affect the depletion
character, however, it has no qualitatively different effect.
The effect of solvents with different solvency have the same
trend on the depletion interaction �25�. Also, as we discussed
in the introduction, in the semidilute solution the effect of the
polydispersity is rather weak. Thus, we only consider the
dilute case.

Throughout this paper, the number average chain length

of the polydisperse polymers is N̄=200. To be a contrast, we
also take N=200 in the monodisperse polymer solution. All
the distances are normalized by the radius of gyration, or

Rg0=b�N̄ /6.
We first consider a polymer solution near a single plate.

Being in a confined state, the polymers avoid approaching
the surface for seeking more conformational entropy. There
exists a depletion region, in which the polymer-monomer
concentration is lower than the bulk concentration. The char-
acteristic of depletion depends on the conformational entropy
of polymers, which is governed by the chain length N. Thus,
the polymers with different length will have different effects
on the characteristic of depletion. In Fig. 1 we give the
polymer-monomer concentration of monodisperse and poly-
disperse polymers in solution near a single plate. The deple-
tion region is about 2Rg0. The result shows that the effect of
polydispersity will broaden the range of the depletion region
and the broader the chain length distribution is, the broader
the depletion region is. Therefore, we can conclude that the
longer chains have more contribution to the depletion.

Now, we investigate a polymer solution between two
plates. This situation is different from that near a single plate.
Besides the conformational entropy, the translational entropy
also comes into play. An expected effect of polydispersity is
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on the local monomer concentration. In order to find how the
chains with different length change in the region between
two plates as the distance varies, we investigate the partial
monomer concentration profiles changing with the distance
d. In Fig. 2 we show the partial concentration profiles

p�x ,N� for different d. Here, the parameters are chosen as
	=0.5, k=1, 
p

0 =0.01. We choose three typical chains with

length Ni=MiN̄ coinciding with the first three Gauss-
Laguerre abscissas for nG=8: M1=0.170 27, M2=0.903 70,
M3=2.251 08. The total monomer concentrations are also
shown in those figures. If the separation between the two
plates is large, the polymers with moderate length �M2 ,M3�
contribute the main part of the monomers staying in the gap.
As the separation decreases, the longer chains are preferen-
tially excluded. Evidently, this is because the longer chains
will lose more conformational entropy if they are in the gap.
When d=5b, we can find that the main contribution of the
polymers in the gap comes from the short chains, corre-

sponding to M1. The other polymers with longer length are
hardly present in the gap.

Figure 3 gives the average volume fraction of monomers
in the gaps as a function of the separation d for monodisperse
and polydisperse polymers with k=2 and k=1. An interesting
effect occurs for small separations. For d�2Rg0, the more
disperse the polymer solution is, the lower the average
monomer volume fraction is. For d�2Rg0, we find the op-
posite result. The effect comes from the fact that the short
polymer chains can enter the gap more easily. The present
result is the same as that of Tuinier and Petukhov �17�.

Figure 4 gives the effect of polydispersity on the depletion
interaction between two plates. With the increasing polydis-
persity the range of the interaction increases, while the depth
of the potential decreases. The present result shows that the
common conclusion, which states that the polydispersity
makes the contact potential between two plates increase
�16,17�, is incorrect. Polydisperse polymer solutions include

chains with different lengths, and the chains longer than N̄
play a role even if the distance between the two plates is
large. Thus, the range of the depletion interaction is broader
in comparison with that for the monodisperse polymers.
However, the effect of polydispersity is small.

As we mentioned in the introduction, if the chain length
distribution is purely exponential, van der Gucht et al. actu-
ally obtained an exact analytical result �26,27�. This distribu-

FIG. 1. Monomer volume fraction profiles of monodisperse and
polydisperse polymers near a single plate. The parameters are taken

as N̄=200, 
p
0 =0.01, 	=0.5. The inset shows the comparison of the

volume fraction profiles of the numerical SCFT calculation for the
case of k=1 �symbols� and the analytical result �solid line�.

FIG. 2. The partial polymer volume fraction profiles 
p�x ,Mi�
between two plates at four different separations d /Rg0

=0.86,1.73,3.46,8.65 �corresponding to d /b=5,10,20,50, respec-

tively�, for the case of 	=0.5, N̄=200, and k=1. The reduced chain
lengths, Mi, coincide with the first three Gauss-Laguerre abscissas
for nG=8: M1=0.170 27, M2=0.903 70, M3=2.251 08. The total
monomer volume fraction 
p�x� is also shown.

FIG. 3. The average monomer volume fraction profiles of
monodisperse and polydisperse polymers in the gap as a function of

the separation d. The parameters are taken as 	=0.5, N̄=200, 
p
0

=0.01. Curves correspond to k=1,2 and monodisperse case.

FIG. 4. The depletion potential between two plates as a function
of the separation d for monodisperse case and polydisperse cases

�k=1,2�. The parameters are taken as 	=0.5, N̄=200, 
p
0 =0.01.

The inset shows the comparison of the depletion potential obtained
of the numerical SCFT calculation for the case of k=1 �symbols�
and the analytical result �solid line�.
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tion corresponds to the case of k=1 in the present model, and
we can compare our result for this case with theirs. For such
an exponential distribution the Laplace transformation can be
used to solve the propagator. The boundary condition of the
propagator on the surface corresponds to C→� when the
depletion of polymer occurs. Therefore, when two plates are
infinitely far apart �d→��, the density of monomers near a
single plate is given by �26,28�


�x�

p

0 = �1 − e−x/Rg0�2.

The grand potential per unit area between two plates with a
separation d is given

��d� =� 2

3N̄

p

0 tanh
 d

2Rg0
� .

Thus, the depletion potential per unit area between two
plates can be given by

W�d� = ��d� − ���� =� 2

3N̄

p

0
tanh
 d

2Rg0
� − 1� .

We can compare our numerical results with the analytical
results given by the above expressions. The comparisons are
shown in the insets of Figs. 1–4 for the volume fraction
profiles and the depletion potential, respectively. One can
find that the present SCFT calculation is in good agreement
with the existing analytical results for the case of k=1.

It is useful to investigate the effect of polydispersity on
two spheres, which relates to the stability of colloidal disper-
sions. In principle calculating the depletion potential be-
tween two spheres is possible using the SCFT in bispherical
coordinates �29�. However, the procedure is rather compli-
cated and it needs high performance computers because of
the two-dimensional characteristic. Here, we adopt a simple
method, namely the Derjaguin approximation �30�, for large
colloidal particles. In this approximation the force f�D� be-
tween two spheres of radius Rc is related to the potential
between two plates, W�D�, in the following way:

f�D� = �RcW�D� , �31�

where D is the distance between the surfaces of the two
spheres. Integrating the force yields the depletion potential
Wsph�D� between two large spheres

Wsph�D� = − 	
D

�

f�x�dx = − �Rc	
D

�

W�x�dx . �32�

The Derjaguin approximation is accurate when the spheres
are large enough. Figure 5 gives the result. The depth of the
interaction is hardly affected by the polydispersity, whereas
the interaction range increases with increasing polydisper-
sity. The polymer polydispersity has a more significant effect
on the attractive interaction between two spheres than that
between two plates. As a result the colloidal dispersions be-
comes more unstable. Thus, the polydispersity enhances the

tendency of phase separation to polymer-colloid mixtures
compared with monodisperse mixtures.

IV. CONCLUSION

We propose a SCFT based on a microscopic description to
investigate the effect of polydispersity on the depletion inter-
action between two plates for nonadsorbing polymers. The
continuous distribution of chain lengths can be incorporated
into SCFT in the grand canonical ensemble. For the Schulz
distribution an efficient numerical method, or Gauss-
Laguerre quadrature formula, has been used to evaluate the
total monomer volume fraction by approximating the con-
tinuous chain lengths distribution with a discrete distribution.
The depletion interactions are calculated from the mean-field
results of monomer concentrations and potential fields. Be-
cause of the conformational entropy the shorter polymer
chains prefer to stay in the gap with the longer chains when
the two plates approach. The present calculations show that
the polydispersity increases the range of the potential be-
tween two parallel plates, while it decreases the depth of the
potential. Also, the present numerical result for the case of
k=1 is in good agreement with the analytical result obtained
by van der Gucht et al. in the study of equilibrium polymers
at the interface. Moreover, the Derjaguin approximation is
used to evaluate the depletion potential between two large
spheres. The effect of polydispersity increases the range of
the interaction, but it has little impact on the contact potential
between the two spheres. However, it increases the driving
force towards phase separation. The present result also
shows that polydisperse polymers have a weak effect on the
depletion, whereas they can induce colloidal suspensions
flocculation easier than monodisperse polymers.
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FIG. 5. The depletion potential between two large spheres as a
function of the separation d for the monodisperse case and the poly-

disperse cases �k=1,2�. The parameters are taken as 	=0.5, N̄
=200, 
p

0 =0.01.
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